## UMTYMP Geometry Day 3

## Perimeter and Area

## Vincent Hall Room 6

## Instructor: Andrea Butler

HW Collection
Quiz info??
Other concerns
Another shot at Proofs ( 15 min )
Lesson on Area and Perimeter

Let's finish this from last week...
Given: Isosceles Trapezoid ABCD with bases AB and CD.
Prove: $A C \cong B D$.


$$
\begin{aligned}
& \text { Gluon } \\
& \text { Glow } \\
& \text { loos Temp Given } \\
& \text { AACD D } \\
& B a s) \\
& A B I C D
\end{aligned}
$$

2. Given
3. $A D E B C$
$4 O C^{13 D} D C \quad 4$ Reflexive
CPCTC

$$
\text { 5. } \angle A D C \equiv \angle B C D
$$

$$
\begin{aligned}
& \text { 5. Base LS } \\
& 1 \text { sos trap } \\
& \cong
\end{aligned}
$$

Let's finish this from last week...
Two Column proofs
We'll do one together. Then you will
work on your own for a few minutes then check with a partner/group.


## Congruence Conjectures

First lets remind ourselves what congruent means. From your book:
Two figures are congruent if they are exactly the same in other words, we can slide, spin, and/or flip one figure so that it is exactly on top of the other figure.

## Triangle Congruence closing thoughts...

From your book:

- In more complicated geometry problems, mark side and angle equalities as you find them (particularly when you find non-obvious ones!)
- Dividing isosceles triangles in half by drawing a segment from the vertex between the equal sides to the midpoint of the base can be very effective.
- If you're stuck on an angle problem, assign one of the angle measures a variable and find other angles in terms of that variable. Hopefully, you'll eventually be able to build an equation you can use to solve for the variable.
- Mark the information you have in a problem on your diagram, particularly equal sides and equal angles. This will make congruent triangles particularly easy to find.
- Always be thinking about what you already know how to do when trying something new!


## New material this week: Special Right Triangles

## You need to KNOW they are $30-60-90$ or 45-45-90 to use these

rules.


Why do these work?

# Perimeter-distance around cm , ft , miles 

## Area-space inside 2 dimensional $\mathrm{cm}^{2}$, $\mathrm{ft}^{2}$, square miles

## Perimeter-distance around cm , ft , miles

Area-space inside 2 dimensional $\mathrm{cm}^{2}, \mathrm{ft}^{2}$, square miles [ABC] means the area of $\triangle A B C$

# Common area formulas: <br> (you probably know most of these...) 



The length of one side of a rectangle is 4 less than 3 times and adjacent side. The perimeter of the rectangle is 64 . Find the area.


$$
\begin{aligned}
& 8 x-8=64 \\
& x=9 \\
& x \quad 23 \cdot 9 \\
& 207 \text { units }^{2}
\end{aligned}
$$

One gallon of paint covers 75 square feet of wall. How many gallons of paint do I have to buy if I paint two walls (no doors, windows, or closets) that are 15 ' long and 8 ' high?

$$
\frac{8^{\prime} \times \frac{120}{} f_{t}^{2}}{\frac{240}{75}}=3.2
$$

An altitude of a triangle is a segment from a vertex of the triangle, perpendicular to the side opposite (or a line containing the side opposite) that vertex of the triangle.

Since all triangles have three vertices and three opposite sides, all triangles have three altitudes.


The area of a triangle is $27 \mathrm{ft}^{2}$. If the height is 3 times the length of its base, find the height and base of the triangle.


Find the $[A B C]$ with side lengths of $5,5,8$.


Given that $\angle Z X Y=\angle X W Y=90^{\circ}$ and $X Z=6, X Y=8, Z Y=10$,

Find $X W$

$$
\begin{aligned}
& \frac{1}{2} \cdot 6.8=24 \\
& \frac{x w \cdot 10}{2}=24 \\
& 10 \cdot w=4 \\
& x w=4.8^{x}
\end{aligned}
$$



Same base, same altitude...
(from pg. 89 in your book)

When you have an altitude in common...the ratio of areas of the triangles equals the ratio of the lengths of the sides to which this common altitude is drawn.

Same base, same altitude (con't)... (from pg. 90 in your book)
> If two triangles share an altitude, then the ratio of their areas is the ratio of the bases to which that altitude is drawn. This is particularly useful in problems in which two triangles have bases along the same line.
$>$ If two triangles share a base, then the ratio of their areas is the ratio of the altitudes to that base.

## Same Base/Same Altitude

Prove that the diagram below has 3 triangles with same area (same base, altitude, // lines)


## butlerihs.weebly.com



How can we find the area?
Perimeter?

$\square$

